
Bringing Object-Relational Technology to The Mainstream
Vishu Krishnamurthy

Oracle Corporation
500, Oracle Parkway,

Redwood Shores, CA 94065
1-650-506-0594

vkrishna@us.oracle.com

Sandeepan Banerjee
Oracle Corporation

500, Oracle Parkway,
Redwood Shores, CA 94065

1-650-506-2817

sabanerj@us.oracle.com

Anil Nori
Ventis Corporation
University Avenue,

Palo Alto, CA
1-650-330-3082

anori@ventis.com

ABSTRACT
Over the last few years, Oracle has evolved its flagship relational
database system into an Object-Relational system by adding an
extensible type system, object storage, an object cache, an
extensible query and indexing framework, support for
multimedia datatypes, a server-based scalable Java virtual
machine, as well as enhancing its SQL DDL and DML language.
These extensions were done with the practical goal of bringing
objects to mainstream use.

Keywords
Data Cartridges, Extensibility, iFS, interMedia, multimedia,
Object-Relational, SQL3, AQ.

1. INTRODUCTION
The new Internet computing environment has suddenly brought
new kinds of data to thousands of users across the globe.
Multimedia data types like images, maps, video clips, and audio
clips were once rarely seen outside of specialty software. Today,
many Web-based applications require their database servers to
manage such data. Other software solutions need to store data
dealing with financial instruments, engineering diagrams, or
molecular structures.

With the addition of object-relational extensions, the Oracle8i™

server can be enhanced by developers to create their own
application-domain-specific data types. For example, you can
create new data types representing customers, financial
portfolios, photographs or telephone networks – and thus ensure
that your database programs deal with the same level of
abstraction as your application domain. In many cases, it is
desirable to integrate these new domain types as closely as
possible with the server so they are treated at par with the built-
in types like NUMBER or VARCHAR. With such integration,
the database server can be readily extended for new domains.

2. ORACLE’S OBJECT-RELATIONAL
TECHNOLOGY
2.1 EXTENSIBILITY FRAMEWORK
Normally, the database provides a set of services for example the
basic storage service, a query processing service, services for
indexing, query optimization and so on. Applications use these
services to avail themselves of database functionality.

In Oracle8i, these services are made extensible so that data
cartridges can provide their own implementations of these
services. When some aspect of a native service provided by the
database is not adequate for the specialized processing that a

developer may provide a domain-specific implementation. For
example, if you build a Spatial Data Cartridge for Geographical
Information Systems, you may need the capability to create
spatial indexes. To do this, you would implement routines that
create a spatial index, insert an entry into the index, update the
index, delete from it, and so on. The server would automatically
invoke your implementation every time indexing functionality
was needed for spatial data. In effect, you would have extended
the Indexing Service of the server.

The programming interfaces that enable extending the various
services are collectively called the Extensibility Framework.

This framework enables the creation of server-based components
called Data Cartridges. For example, a spatial data cartridge
may provide comprehensive functionality for a geographic
domain such as being able to store spatial data, perform
proximity/overlap comparisons on such data, and also integrate
spatial data with the server by providing the ability to index on
such data. Data cartridges can have broad horizontal utility (such
as imaging, time series, spatial data) or narrow vertical focus
(such as piping diagrams, networks or bank accounts). The data
cartridge programming-interface is publicly available and is also
used by interMedia (see below).

2.2 OBJECT TYPE SYSTEM
 Historically, applications have focused on accessing and
modifying corporate data that is stored in tables composed of
native SQL data types such as INTEGER, NUMBER, DATE,
and CHAR. In Oracle8i, there is support not only for these
native types, but also for new ‘object’ data types, tracking the
semantics of the forthcoming SQL3 standard.

2.2.1 Object Types
An object type, distinct from native SQL data types, is user-
defined and specifies both the underlying persistent data (called
‘attributes’ of the object type) and the related behaviors
(‘methods’ of the object type). Object types are used to extend
the modeling capabilities provided by the native data types. You
can use object types to make better models of complex entities in
the real world by binding data attributes to semantic behaviors.

A method is a procedure or a function that is part of an object
type definition. Methods can be run within the execution
environment of Oracle8i or dispatched to run outside it.

2.2.2 Collection Types
Collections are SQL data types that contain multiple elements.
Each element or value for a collection is the same data type. In
Oracle8i there are two collection types – VARRAYs and Nested

Tables. A VARRAY contains a variable number of ordered
elements. VARRAY data types can be used as a column of a
table or as an attribute of an object type.

Using Oracle8i SQL, a named table type can be created. These
can be used as Nested Tables to provide the semantics of an
unordered collection. As with VARRAY, a Nested Table type
can be used as a column of a table or as an attribute of an object
type.

2.2.3 Relationship Types
If you create an object table in Oracle8i, it is possible to obtain a
reference (or the database pointer) to an associated row object.
References are important for modeling relationships and
navigating among object instances particularly in client-side
applications.

2.2.4 Large Objects
Oracle8i provides the large object (LOB) types to handle the
storage demands of images, video clips, documents, and other
such forms of data. Large objects are stored in a manner that
optimizes space utilization and provides efficient access. More
specifically, large objects are composed of locators and the
related binary or character data. The LOB locators are stored in-
line with other table record columns and for internal LOBs
(BLOB, CLOB, and NCLOB) the data can reside in a separate
storage area. For external LOBs (BFILEs), the data is stored
outside the database tablespaces in operating system files.

3. JAVA SUPPORT
Oracle provides native support for Java in the DBMS. That is,
Oracle has developed its own Java VM that integrates with the
database mechanisms closely for high performance and
scalability. In addition, the database system natively supports
JDBC and SQLJ, an ORB and the EJB framework. The Oracle8i
also comes with a web server; so, the database system can be an
HTTP listner.

The object relational facilities provide a more natural and
productive way to maintain a consistent structure between a set
of Java classes in at the application level and the data model at
the data storage level. With the integration of Java with the
Oracle8i server, Oracle provides a tight integration between its
object-relational facilities and Java. It does so in three important
ways:

• Java class instances can be stored as Oracle object type
instances.

• Server Object-Relational schema can be mapped to Java
classes.

• Java is an implementation choice for object type methods.

4. OBJECT CACHE
Oracle8i comes with a client-side cache for object-relational data
to give applications the following benefits:

• Transparent mapping of database objects to host language
objects in memory, and memory management for such objects
with full transactional semantics.

• Navigational object access when operating on a graph of
inter-connected objects.

• The ability to operate on the transitive closure of the root
object in one network roundtrip.

• The object cache supports both a pessimistic locking scheme
and an optimistic locking scheme.

5. ORACLE PRODUCTS BASED ON
OBJECT-RELATIONAL TECHNOLOGY
5.1 interMedia
Internet-based applications require advanced data management
services that support the rich data types used in electronic
commerce catalogs, corporate repositories, and other media-rich
applications. Oracle interMedia extends Oracle8i reliability and
availability to applications that need access to image, audio,
video, location, text, and relational data.

 Open APIs enable standard SQL access using native text, image,
audio, and video, and other data type services, operators, and
metadata management, allowing third parties to build additional
media extensions for specialized data types.

Intermedia is tightly integrated with the Oracle database system
via the extensibility framework.

5.2 INTERNET FILE SYSTEM (iFS)
The Oracle Internet File System (iFS) enables the database to be
treated as it were simply a shared network drive. This means that
users can store and retrieve files managed by the database as if
they were files managed by a file server.

The iFS makes it possible to view relational data stored in
database tables as if they were files and folders managed by a
networked drive. It allows end users to access files and folders in
the iFS variety of protocols, giving users universal access to their
data. This means that an iFS user seems the same files and
folders from Windows Explorer, a browser, an email client or an
FTP client.

The iFS uses the object-relational framework directly and
indirectly through interMedia to index documents and facilitate
searching and querying of these documents.

5.3 ADVANCED QUEUES
Integrating applications is an extremely complex and challenging
task exacerbated by the fact that enterprise applications are
geographically widely distributed, autonomously developed, and
heterogeneous. Message queuing provides three essential
features for the integration of such applications; an asynchronous
communication model, reliable communication in the face of
network failures, and a loosely coupled transaction model.

Oracle’s Advanced Queuing employs the object-relational
framework to store, query and project information from messages
that are essentially treated as opaque objects.

6. ACKNOWLEDGMENTS
Our thanks to Andy Mendelsohn, Kenneth Ng, Chin-Heng Hong,
iFS group, AQ group, interMedia group, and the SQL, Objects
and Extensibility group for bringing the object-relational
technology to mainstream applications.

